Refrigeration & Air conditioning Question bank 2020-21

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :Refrigeration & Air Conditioning (18ME0335)Course & Branch: B.Tech -AGRIYear & Sem: III-B.Tech & I-SemRegulation: R18

	<u>introduction</u>									
1		Define the following terms.								
		i)Refrigeration	L1	C01	2M					
		ii)Heat Engine	L1	C01	2M					
		iii)Unit of Refrigeration	L1	C01	2M					
		iv)Draw PV chart & TS chart for regenerative air cooling system	L3	C01	2M					
		v)list the application of refrigeration system	L1	C01	2M					
2	а	Explain the working of Bell-Coleman cycle air refrigeration with P-v and	L1	C01	5M					
		T-S diagrams.								
	b	Explain the working of a Reversed Carnot cycle of refrigeration with P-V	L5	C01	5M					
		and T-S Diagrams.								
3	a	Define C.O.P	L1	C03	3M					
	b	With neat sketch Explain the working of Simple air refrigeration system	L1	C01	7M					
4	a	What are the limitations of Carnot cycle of refrigeration	L1	C04	3M					
	b	Describe Boot strap air refrigeration system, with a schematic diagram	L1	C01	7M					
		and show the cycle on T-S Diagram.								
5	a	State the applications of refrigeration	L2	C02	3M					
	b	Explain, with a neat sketch the working principle of Regenerative Air	L5	C05	7M					
		refrigeration system.								
6	a	What is the Necessity of refrigeration	L1	C03	3M					
	b	Describe with a neat sketch a Reduced ambient air refrigeration system	L1	C01	7M					
7		In a refrigeration plant working on Bell Coleman cycle, air is compressed	L5	C02	10M					
		to 5 bar from 1 bar. Its initial temperature is 10 °C. After compression,								
		the air is cooled up to 20 $^{\circ}$ C in a cooler before expanding to a pressure of								
		1 bar. Determine the theoretical C.O.P of the plant and net refrigerating								
		effect. Take $Cp = 1.005 \text{ KJ/Kg K}$ and $Cv = 0718 \text{ KJ/Kg K}$.								
8		A refrigerator working on Bell Coleman cycle operates between pressure	L5	C03	10M					
		limits of 1.05 bar and 8.5 bar. Air is drawn from the cold chamber at 10								
		°C, compressed and then it is cooled to 30 °C before entering the								
		expansion cylinder. The expansion and compression follows the law PV								
		$^{1.3}$ = constant. Determine the theoretical C O P of the system								

<u>UNIT –I</u> Introduction

Refrigeration & Air conditioning Question bank 2020-21

9	An air refrigerator working on Bell Coleman cycle takes the air into the	L1	C01	10M
	compressor at 1 bar and -7 °C and is compressed isentropically to 5.5 bar			
	and it is further cooled to 18° C at the same pressure. Find the C.O.P of the			
	system if (a). The expression is isentropic (b). The expression follows the			
	law PV ^{1.25} = constant. Take γ = 1.4 and Cp = 1 KJ/Kg K.			
10	An air refrigerator used for food storage provides 50 tons of refrigeration.	L1	C02	10M
	The temperature of air entering the compressor is 7° C and the			
	temperature before entering into expander is 27 ° C .Assuming 30 % more			
	power is required than theoretical, find (a).Actual C.O.P of the cycle			
	(b).KW capacity required to run the compressor.			

<u>UNIT –II</u> Vapour Compression Refrigeration System

1		i)Explain the	e functi	ion of			L1	C02	2M			
		ii)Draw TS o	chart a	nd PH	chart for sub	o cooling in	vapor o	compre	ession cycle	L3		2M
		iii)Explain a	bout ze	eotrop	ic refrigerant	t mixture.	-	-	-	L1		2M
		iv)Differenti	ate cor	ndense	er and evapor	rator				L4		2M
		v)list the app	olicatio	on of c	ascade refrig	gerant system	1.			L1		2M
2	a	What are the	e advar	ntages	of vapour c	ompression	refrige	ration	system over	L2	C02	5M
		air refrigerat	air refrigeration system?									
	b	With a neat	sketch	, expl	ain the work	king principl	e of va	apour	compression	L6	C01	5M
		refrigeration	system	n.								
3		The temperature limits of an ammonia refrigerating system are 25° C an								L5	C04	10M
		10 $^{\circ}$ C. If the	e gas is	dry a	t the end of	compression	, calcu	late th	e coefficient			
		of performa	nce of	the	cycle assum	ing no und	er coo	ling o	f the liquid			
		ammonia. U	se the f	follow	ing table for	properties o	f amm	onia.				
		Temperatur	e ∘	Liqui	id Heat	Latent Hea	t	Liqui	d Entropy			
		C	-	(Kj	/ kg)	(Kj / kg)	-	(Kj /	kg K)			
		25			298.9	1166.9	4		1.1242			
		-10			135.37	1297.6	8	(0.5443			
4		A Vapour c	ompres	sion	refrigerator y	works betwe	en the	press	ure limits of	L5	C01	10M
•		60 bar and 2	5 har	The w	vorking fluid	is just dry a	t the e	nd of	compression	115	001	10101
		and there is	no un	nder o	ooling of th	e liquid bef	are the	evna	nsion valve			
		Dotormino ($\mathbf{D} \mathbf{D} \mathbf{o} \mathbf{f}$	the evole (i	i) Consoity	of the	rofria	fision varve.			
		Determine ($\frac{1}{2}$		f 5 ka/min	I). Capacity	or the	Temp				
					5 Kg/IIIII.	-: / 1)	Entre		/1 V)			
		(Bar)	1 emp	C	Liquid	J / Kg)	Liqui	ppy(k j	/ Kg K)			
		(Dai) 60	20 20	<u> </u>	151.06	203.20		u 54	1 0332			
		25	26	5 51	56 32	322.58	0.3	26	1.0332			
		23	20	/1	50.52	522.50	0.2	20	1.2101			
5		28 tonnes id	ce fror	n and	at 0°C is	s produced	per da	y in a	an ammonia	L5	C02	10M
		refrigerator.	The te	mpera	ture range ir	the compre	ssor is	from	25° C to -15 $^{\circ}$			
		C .The vap	our is	dry a	nd saturated	l at the end	of co	mpres	sion and an			
L	1	1		-				-		1	Pag	ge 2

				R	efrigeratio	n & Ai	r conditi	oning Question	ı bank	2020	-21
	expansion valve is used. There is no liquid sub cooling .Assuming actual C.O.P of 62 % of the theoretical, Calculate the power required to drive the										
		compressor. Following properties of ammonia are given									
		Temperatu	ur Enthalpy	(kj / kg)	Entro	py (Kj/	/ kg K)			
		e ° C	Liquid		apour	Liqui	d	Vapour			
		25	298.9		1465.84	1.	1242	5.0391			
		-15	112.34	<u> </u>	$\frac{1426.54}{2}$	0.4	4572	5.5490	15	C01	1014
0		A refrigera	tion machine	using f	k-12 as ref	rigeran	t operate	es between the	LS	C01	10M
		pressures 2		ar. The	Compression The veneur i	in in dr	entropic	and there is no			
		the heating	ing in the conde	magning	Estimate	is in ar	y saturat	D If the actual			
			65 of theoretic		a colouloto	the no	t coolin	r. If the actual			
		C.O.F is 0.	of theorem flow	in 5 kg	c, calculate	rtios o	f rofrigo	g produced per			
		Drossur	Tomporaturo	IS J Kg	min. Flope		Entropy	all alt			
		e	• C	Liquio	ipy (Kj / Kg)) Jur	vapour.	ci / kg K			
		(Bar)	e	Liquit	u vapo	Jui		.) /			
		9	36	70.	55 20	1.8	(0.6836			
		2.5	-7	29.0	52 18	4.5	(0.7001			
7		What is an	azetrope? Give	e some	examples to	indica	te its im	portance.	L1	C04	10M
8	a	State the de	esirable proper	ties of r	efrigerants.				L1	C05	5M
	b	Name the d	lifferent refrige	erants g	enerally use	ed.			L2	C01	5M
9		A vapour c	ompression ref	rigerati	on plant wo	orks be	tween pr	essure limits of	L1	C02	10M
		5.3 bar and	2.1 bar. The v	apour i	s super-hea	ted at t	the end o	of compression,			
		its tempera	ture being 37°	C .The	e vapour is	super-	heated b	by 5 $^{\circ}$ C before			
		entering the	e compressor.								
		If the spec	cific heat of s	uper-he	ated vapou	r is 0.	63 kj /	kg k, find the			
		coefficient of performance of the plant. Use the data given below									
		Pressure (E	Bar) Temperat	ure °	e ° Liquid Heat (kj Latent Heat(kj/kg) /kg)						
		5.3	15.	5	56.15 144.9						
		2.1	2.1 -14 25.12 158.7								
10		Sketch and	explain a two-	stage ca	ascade refri	geratio	n system	l.	L1	C03	10M

<u>UNIT –III</u> **Other Refrigeration Systems**

1		i)Explain the function of vapor absorption system.	L1	C03	2M			
		ii)Explain principle of evaporation in cooling system	L1		2M			
		iii)State PELTIER EFFECT	L1		2M			
		iv)Compare two fluid with three fluid in VAR system	L4		2M			
		v)what is the function of vortex spin chamber.	L1		2M			
2	a	Advantages of vapour absorption refrigeration system over vapour	L6	C03	5M			
		compression refrigeration system.						
	b	State the advantages and limitations of VAR	L1	C05	5M			
3		Explain with a neat sketch the working of lithium-bromide vapour	L5	C01	10M			
		absorption system						
	Page							

Refrigeration & Air conditioning Question bank 2020-21 Explain with help of a neat sketch, the working of a steam jet refrigeration 4 L5 C02 10M system. L4 10M 5 Comparison between two fluid VAR system and three fluid VAR system C01 Illuminate the working principal of Electrolux refrigeration system L2 C01 10M 6 7 Differentiate between vapour absorption and vapour compression L4 C03 10M refrigeration systems. 10M Describe the working of a vapour absorption refrigeration system with the L1 C02 8 help of a neat sketch. 9 Explain thermo-electric refrigeration system with sketch L1 C01 10M 10 Describe the working of Vortex tube with a neat sketch and its merits and L1 C03 10M demerits

<u>UNIT –IV</u>

Introduction to Air Conditioning

1		i)What do you understand by the term nevel remains?	T 1	C04	214
1	a	i) What do you understand by the term psychrometry?		C04	21VI 2M
		iii)Define Absolute Humidity			$2\mathbf{N}$
		iv)Differentiate DBT & WBT			2M
		v)Explain the concept of RSHE	L4 I 1		$\frac{2}{2}$ M
2		A room $7m \times 4m \times 4m$ is occupied by an air-water vapour mixture at	L1	C04	10M
_		380C. The atmospheric pressure is 1 bar and the relative humidity is	21	001	10101
		70%. Determine the humidity ratio, dew point, mass of dry air and mass			
		of water vapour. If the mixture of air-water vapour is further cooled at			
		constant pressure until the temperature is 100C. Find the amount of water			
		vapour condensed			
3	a	Define Sensible heat factor	L5	C01	5M
	b	With help of psychrometric chart, Explain the following processes	L5	C03	5M
		(i).Sensible hearting (ii) Sensible cooling			
4		Atmospheric air at 0.965 bar enters the adiabatic saturator. The wet bulb	L5	C01	10M
		temperature is 200C and dry bulb temperature is 310C during adiabatic			
		saturation process. Determine (i) humidity ratio of the entering air (ii)			
		vapour pressure and relative humidity at 310C and (iii) dew point			
		temperature.			
5	a	With help of psychrometric chart, Explain the Heating and	L5	C02	5M
		dehumidificationprocesses			
	b	With help of psychrometric chart, Explain the cooling and	L5	C03	5M
	-	humidificationprocesses	-		
6	a	Define relative humidity, absolute humidity	L1	C02	5M
	b	Define saturated air, degree of saturation	L1	C01	5M
7		Explain the procedure to draw a grand sensible heat factor line on a	L5	C01	10M
,		psychrometric chart	20	201	10111
		psychiometric endit.			

Refrigeration & Air conditioning Question bank 2020-21

8	Explain the concept of effective roomsensible heat factor with neat	L5	C05	10M
	diagram.			
9	A room has a sensible heat gain of 24 KW and a latent heat gain of 5.2	L5	C01	10M
	KW and it has to be maintained at 26 $^\circ$ C DBT and 50 % RH.180 m 3 /			
	min of air is delivered to the room. Determine the state of supply of air.			
10	Define the following terms (i)Infiltration (ii)Natural ventilation (iii)	L1	C02	10M
	Forced ventilation			

<u>UNIT –V</u>

Air Conditioning Systems and Distribution of Air i)What is mean by human comfort? C05 L1 2Mii)Define Effective Temperature. L1 2M iii)Explain the purpose of humidifier in winter air conditioning system L1 2M iv)How the ducts are classifieds. L1 2M v)compare winter and summer air conditioning system. L4 2M Explain the difference between winter air conditioning and summer air C02 2 L5 10M conditioning With neat diagram explain the working of summer air conditioning 3 L5 C04 10M system Explain the working of domestic refrigerator with a neat sketch 4 L5 C01 10M 5 Define the terms static and velocity pressure in a duct. L1 C05 5M а Define the term duct. Explain the needs C02 L1 5M b Explain winter air conditioning system with sketch L5 6 C04 10M Derive an expression for continuity equation in ducts. L1 C01 7 5M а The main air supply duct of an air conditioning system is 800 mm X 600 C02 L1 5M b mm in cross section and carries 300 m^3 / min of standard air. It branches into two ducts of cross section 600 mm X 500 mm and 600 mm X 400 mm. If the mean velocity in the larger branch is 480 m / min. Find (i) Mean velocity in the main duct and the smaller branch (ii) mean velocity pressure in each duct. Following data refers to an air conditioning system to be designed for an C01 10M 8 L1 industrial process for hot and wet climate. Outside conditions 30 ° C DBT and 75 % RH, Inside conditions 20 ° C DBT and 60 % RH. The require condition is to be achieved first by cooling and dehumidifying and then by heating. If 20 m³ of air is absorbed by the plant every minute. Find (i) Capacity of the cooling coil in tonnes of refrigeration (ii)Capacity of the heating coil in KW (iii) Amount of water removed per hour. Take h_1 =81.8 kj/kg, h_2 =34.2 kj/kg, h_3 =42.6 kj/kg, $W_1=0.0202 \text{ kj/kg}, W_2=0.0088 \text{ kj/kg}, V_{s1}=0.886 \text{ m}^3/\text{kg}.$ 9 Why the ducts are used in an air conditioning system. L1 C05 5M а Which material is commonly used for making ducts in air conditioning L1 C03 b 5M systems?

	Refrigeration & Air conditioning Question bank		2020-21		
10		An air conditioning plant is required to supply 60 m ³ of air per minute at a DBT of 21°C and 55 % RH. The outside air is at DBT of 28 ° C and 60 % RH. Determine the mass of water drained and capacity of the cooling coil. Assume the air conditioning plant first to dehumidify and then to cool the air. Take W ₁ =0.0142, W ₂ =0.0084 kj /kg of dry air, V _{s2} =0.845 m ³ / kg, h ₁ =64.8 kj/kg, h ₂ =42.4 kj/kg.	L1	C02	10M

Prepared by: Mr.V.KARTHIKEYAN